Math 1553 Worksheet §2.5, 2.6, 2.7, 2.9, 3.1

1. If the statement is always true, circle TRUE. Otherwise, circle FALSE. Justify your answer.
a) Suppose $A=\left(\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right)$ and $A\left(\begin{array}{c}-3 \\ 2 \\ 7\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. Must v_{1}, v_{2}, v_{3} be linearly dependent? If true, write a linear dependence relation for the vectors. TRUE FALSE
b) If b is in $\operatorname{Col}(A)$, then so is $5 b$. TRUE FALSE
c) In the following, A is an $m \times n$ matrix.
(1) TRUE FALSE If A has linearly dependent columns, then $m<n$.
(2) TRUE FALSE If A has linearly independent columns, then $A x=b$ must have at least one solution for each b in \mathbf{R}^{m}.
(3) TRUE FALSE If b is a vector in \mathbf{R}^{m} and $A x=b$ has exactly one solution, then $m \geq n$.
2. Circle TRUE if the statement is always true, and circle FALSE otherwise.
a) If A is a 3×10 matrix with 2 pivots, then $\operatorname{dim}(\operatorname{Nul} A)=8$ and $\operatorname{rank}(A)=2$.

TRUE
 FALSE

b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the transformation $T(x)=A x$ must have \mathbf{R}^{m} as its range.

TRUE
 FALSE

c) If $\{a, b, c\}$ is a basis of a subspace V, then $\{a, a+b, b+c\}$ is a basis of V as well.

TRUE FALSE
3. Write a matrix A so that $\operatorname{Col}(A)$ is the solid blue line and $\operatorname{Nul}(A)$ is the dotted red line drawn below.

4. Let $A=\left(\begin{array}{cccc}1 & -5 & -2 & -4 \\ 2 & 3 & 9 & 5 \\ 1 & 1 & 4 & 2\end{array}\right)$, and let T be the matrix transformation associated to A, so $T(x)=A x$.
a) What is the domain of T ? What is the codomain of T ? Give an example of a vector in the range of T.
b) This is extra practice in case the studio finishes the rest of the worksheet early. The RREF of A is $\left(\begin{array}{llll}1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$.
(i) Write bases for $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$.
(ii) Is there a vector in the codomain of T which is not in the range of T ? Justify your answer.

